Benchtop

Multimeters

MX 5006-6000pts MX 5060-60000pts

Contents

General directions 3
Introduction 3
Precautions and safety measures 3
Symbols on the instrument 4
Warranty 5
Maintenance, metrological verification. 5
Unpacking, repacking 5
Repair under warranty 5
Service 6
Maintenance 6
Replacing the fuse 6
Prop. 6
Communication interface 6
Description of the instruments 7
MX 5006, MX 5060 front panel 7
MX 5006, MX 5060 back 7
Functional description 8
Display unit 8
Switch 10
Keypad 11
Preparation for use 16
How are the various quantities measured? 17

1. Voltage measurement 17
2. Current measurement 18
3. Frequency measurement 19
4. Resistance measurement 19
5. Audible continuity measurement 19
6. Diode test 20
7. Capacitance measurement 20
8. Temperature measurement 21
9. Measurement on an MLI type speed variator 22
Technical characteristics of MX 5006 23
Technical characteristics of MX 5060 30
General characteristics 38
Environmental conditions 38
Power supply 38
Display 38
Safety 38
CEM 38
Mechanical characteristics 38
Housing 38
Supply 39

General directions

Congratulations! You are the new owner of a benchtop multimeter.

We thank you for this sign of confidence in the quality of our products.
The line of instruments to which it belongs comprises the following models:

MX 5006	6000pts	TRMS	-	
MX 5060	60000pts	TRMS	USB	Range 60mV

It complies with safety standard NF EN 61010-1 + NF EN 61010-2-030 concerning electronic measuring instruments.
For best results, read this manual closely and observe the precautions of use.
Failure to observe these warnings and/or directions may damage the instrument and/or its components and may endanger the user.

- This instrument is been designed to be used as follows:
-indoors
-in an environment of pollution degree 2
-at an altitude of less than 2000 m
-at a temperature between $0^{\circ} \mathrm{C}$ and $40^{\circ} \mathrm{C}$
-at a relative humidity below 80% up to $35^{\circ} \mathrm{C}$.
- The safety of any system incorporating the instrument is the responsibility of the system integrator.
- It can be used for measurements on 1000 V , CAT III and 600 V , CAT IV circuits and can be supplied by a $230 \mathrm{~V} \pm 10 \%$ AC network (230 V CAT II). However, some accessories may lead to the use of this instrument on circuits of a lower voltage and category.
before
- Comply with the environmental and storage conditions.
- Check the integrity of the guards and insulation of the accessories. Any item of which the insulation is deteriorated (even partially) must be removed from service and scrapped. A change of colour of the insulation is a sign of deterioration.
- Supply: make sure that the power cord supplied with the instrument is in good condition. It must be connected to line power ($230 \mathrm{~V} \pm 10 \%, 600 \mathrm{~V}$, CAT IV), (US version: $110 \mathrm{~V} \pm 10 \%$)
- The removable power cords must be replaced by cords having the appropriate rated characteristics.
- Read closely all notes preceded by the $\$$ symbol.
- The instrument's power supply has an electronic protection device that resets automatically after the fault disappears.
- As a safety measure, use only the appropriate leads and accessories supplied with the instrument or approved by the manufacturer.

General directions (continued)

Definitions of the measurement categories

CAT II: Test and measurement circuits directly connected to the points of use of the low-voltage network (power outlets and other similar points). E.g.: Measurements on the network circuits of household appliances, portable tools, and similar devices.

CAT III: Test and measurement circuits connected to parts of the low-voltage network of the building.
E.g.: Measurements on distribution panels (including secondary meters), circuitbreakers, wiring including cables, bus bars, branch boxes, disconnecting switches, power outlets in the fixed installation, and industrial appliances and other equipment, such as motors permanently connected to the fixed installation.

CAT IV: Test and measurement circuits connected to the source of the lowvoltage network of the building.
E.g.: Measurements on devices installed before the main fuse or the circuitbreaker of the building installation.

Warning! Using a measuring instrument, a lead, or an accessory belonging to a lower measurement or voltage category derates the resulting system (instrument + leads + accessories) to the lowest measurement category and/or service voltage of any of the components.

Symbols on the instrument

Risk of electric shock: directions for connection and disconnection of the inputs. Always connect the probes or adapters to the instrument before connecting them to the measurement points. Always disconnect the probes or cords from the measurement points before disconnecting them from the instrument. These directions apply before the instrument is cleaned.

Warning: Hazard. The operator must refer to the manual each time this danger symbol is encountered.

Double insulation

Earth

In the European Union, this product is subject to selective collection for the recycling of electrical and electronic equipment waste in accordance with Directive WEEE 2002/96/EC: this equipment must not be treated as ordinary waste. The spent batteries must not be treated as ordinary waste. Take them in to the appropriate collection point for recycling.

The CE marking indicates conformity with the European "Low Voltage", "EMC", "WEEE" and "RoHS" directives.

USB (MX 5060, only)

General instructions (continued)

Warranty

This equipment is warranted for 3 years against any defect of materials or workmanship, in accordance with the general terms of sale. During the warranty period, the instrument may be repaired only by the manufacturer, who reserves the right to repair the instrument or to replace it or part of it. If the equipment is returned to the manufacturer, the cost of transport to the manufacturer is borne by the customer.

The warranty does not apply following:

- improper use of the equipment or use in association with incompatible equipment
- modification of the equipment without the explicit permission of the manufacturer's technical staff
- maintenance done by a person not approved by the manufacturer
- adaptation to a particular application not anticipated in the definition of the equipment or by the user manual
- a shock, a fall, or flooding.

Maintenance, metrological verification

Unpacking, repacking

Repair under warranty and post warranty

All of the equipment has undergone mechanical and electrical checks before being dispatched. When you receive it, carry out a quick check to detect any deterioration that may have occurred during transport. Should the need arise, immediately contact our sales department and notify the carrier of the customary reservations.
Use the original packaging to reship the equipment, if possible. Indicate as clearly as possible, by a note attached to the equipment, the reasons for the transfer.

For all repairs before or after expiry of warranty, please return the device to your distributor.
Before opening the instrument, you must disconnect it from line power and from the measurement circuits and make sure that you are not charged with static electricity, which might destroy internal components. An adjustment, maintenance, or repair of the live instrument must be undertaken only by personnel who are qualified and have familiarized themselves with the directions in this manual.

This instrument should be checked at least once a year. For checking and calibration, contact one of our accredited metrology laboratories (information and contact details available on request), at our Chauvin Arnoux subsidiary or the branch in your country.

Service

- Disconnect everything connected to the instrument and set the switch to "OFF".
- Use a soft cloth, moistened with soapy water.

Rinse with a damp cloth and dry rapidly with a dry cloth or forced air.

- Make sure that no foreign objects interfere with the operation of the device by which the leads are snapped into place.

Replacing

 the fuse- Before replacing the fuse, disconnect the instrument from any source of current.
- Checking the current fuse:

1. Set the switch to Ω.
2. Connect the V socket to the 10 A socket; leave the "COM" socket open.
3. The display unit must indicate a result $<2 \Omega$, if not, replace the fuse. the housing:

- Current protection: fuse, 11A, 1000V > 20kA (10x38)
- Power supply protection: PTC

Tilt stand

Communication

 interface

The tilt stand/handle has 2 blue pushbuttons on the sides that are used to unlock it:

- Press the pushbuttons simultaneously
- Adjust the prop to the desired position
- Release the 2 pushbuttons to lock the handle in position

The MX 5060 has a USB communication interface, used:

- to configure and read the data measured by the instrument (using SXDMM software),
- to recalibrate the instrument.
(6) The MX5006 does not have a USB communication port. Only an RS link is available to calibrate the instrument (after opening it).

Description of the instruments

Front panel

MX 5006

MX 5060

Rear panel

Functional description

Display unit
 MX 5006
 double display
 6000pts

MX 5060
double display 60000pts

Quantities measured

- VLowz AC voltage measurement at low impedance (VLowZ)
- VAC AC voltage measurement
- VAC/DC DC or AC+DC voltage measurement at high impedance (V)
- A Current measurement A
- Hz Frequency measurement
- $\Omega \quad$ Resistance measurement
- $\mu \mathrm{F}$ Capacitance measurement
- T° Temperature measurement
- ms Measurement of the period
- \% Measurement of relative value

Units

- V Volt
- A Ampere
- Hz Hertz
- $\Omega \quad$ Ohm
- F Farad
- ${ }^{\circ} \mathrm{F}$ Degree Fahrenheit
- ${ }^{\circ} \mathrm{C} \quad$ Degree Celsius
- ms millisecond
- k kilo ($k \Omega-k H z$)
- M Mega (M $\Omega-\mathrm{MHz}$)
- n nano (nF)
- μ micro ($\mu \mathrm{V}-\mu \mathrm{A}-\mu \mathrm{F}$)
- m milli ($\mathrm{mV}-\mathrm{mA}-\mathrm{mF}$)
- \% Percentage

Functional description (continued)

Symbols	Designation
AC	Measurement of the RMS AC signal
DC	Measurement of the DC signal
AC + DC	Measurement of the TRMS AC and DC signal
AUTO	Automatic range switching
\triangle REL	Values relative to a reference
Δ Mem	Presence of a reference value in memory
HOLD	Storage and display of stored values
MAX	Maximum value
MIN	Minimum value
PEAK+	Maximum peak value
PEAK-	Minimum peak value
.run r.un ru.n	Capacitance meter, acquisition in progress
-----	Frequency measurement impossible
O.L	Overshoot of the measurement capacities
V	Volt
Hz	Hertz
F	Farad
${ }^{\circ} \mathrm{C}{ }^{\circ} \mathrm{F}$	Degree Celsius, degree Fahrenheit
A	Ampere
\%	Percentage
Ω	Ohm
ms	millisecond
n	Symbol of the nano- prefix
μ	Symbol of the micro- prefix
m	Symbol of the milli- prefix
k	Symbol of the kilo- prefix
M	Symbol of the mega- prefix
en))	Symbol of the audible continuity measurement
\rightarrow	Symbol of the measurement and testing of a semiconductor junction
$\hat{1}$	Warning, possibility of electric shock (*)
$\stackrel{\rightarrow}{\square}$	USB communication
1	300 Hz MLI filter

(*)When voltages exceeding 60 VDC or 25 VAC are measured, the symbol flashes on the display unit.

Functional description (continued)

Switch

The switch setting determines the measurement function chosen. The rotation of the switch has priority over key presses. The change from one position to another resets the configuration of the measurement mode.

The change from one measurement function to another deactivates the HOLD key, if the HOLD mode was selected.

The switch has 10 positions:

1. OFF mode - Switches the multimeter off
2. AC voltage measurement at low impedance (VLowZ)
3. RMS AC voltage measurement
4. DC or $\mathrm{AC}+\mathrm{DC}$ voltage measurement at high impedance (V)
5. Frequency measurement
6. Capacitance measurement
7. Resistance measurement, audible continuity measurement, diode test
8. Temperature measurement T, K
9. Current measurement $A(A C, D C$, or $A C+D C)$
10. OFF mode - Switches the multimeter off

Functional description (continued)

Keypad

MODE
AC/DC

RANGE

MAX/MIN PEAK

The keypad has the following function keys:

The keys are taken into account and applied when pressed. If the key press is validated, the instrument beeps.

General rules For the keys, 2 types of possible action are distinguished:

- Short press: key press lasting less than 2 seconds, validated by a beep as soon as the key press is detected.
- Long press: key press lasting more than 2 seconds, validated by a beep as soon as the key press is detected.

Choice of coupling, AC, DC, AC+DC, of the bargraph style, or of the secondary function key of the keypad (yellow).

Manual selection of the measurement range. The range defines the maximum measurement span the instrument can cover.

The Auto Range mode is activated as default.

Display of the MAX, MIN, PEAK+, or PEAK- mode:

- MAX and MIN display the highest and lowest value of the RMS measurement.
- PEAK+ displays the maximum peak instantaneous value of the measurement.
- PEAK- displays the minimum peak instantaneous value of the measurement.

Storage of the measurements and quantities at a given time.
Freezes the display without stopping acquisition. The bargraph continues to operate normally.
The key is used to deactivate back-lighting of the instrument.
$\triangle R E L$ Display and storage of the reference value of the differential value in the unit of the quantity measured.

This key is used to limit the bandwidth to $\approx 300 \mathrm{~Hz}$.
Thanks to the low-pass filter (4th order), it is possible to measure the RMS voltage delivered by an MLI type speed variator (for asynchronous motor).
See curves p. 29 and 37.

Functional description (continued)

Summary table of the keys	Successive short presses	Long press
AC/DC MODE MODE AC/DC	-Choice of AC, DC, or AC+DC coupling -Access to the second function (yellow marking on the front panel) -In the \triangle REL or MAX/MIN PEAK plus \triangle REL mode, the key is used to go from (present value - reference value) to The value is displayed in \%.	Choice of bargraph style: Bargraph graduated from zero to full scale or with central zero
RANGE RANGE	-Manual selection of the measurement range -Exit from the MAX/MIN, PEAK mode	Exit from the manual mode to return to auto range (the default)
* MAX/MIN PEAK MAX/MIN PEAK (*) See example on p. 13	$-1^{\text {st }}$ press: recording of MAX, MIN, PEAK+, PEAK- (on the 2nd display unit). The max. value is displayed as default. - Subsequent presses: look-up of recorded values	Exit from the MAX/MIN PEAK mode
HOLD HOLD	-Activation/deactivation of freezing of the display. Acquisition continues as a background task. In the MAX/MIN PEAK mode, when HOLD is active, the blinking of the "MAX MIN PEAK" symbol indicates that acquisition continues as a background task.	On/off switching of the backlight \square
* \triangle REL \triangle REL (*) See example on p. 14	$-1^{\text {st }}$ press: activates the relative mode \triangle REL (present value - reference value) and stores the measured value, which will be used as reference. " $\Delta \mathrm{Mem}$ " indicates storage of the reference. -Subsequent presses: toggles the display between measured value, reference, and relative measurement $\triangle R E L$, reference for look-up.	Exit from the \triangle REL mode and erasure of the reference value (the Δ Mem symbol goes off)
	Activation of the 300 Hz bandwidth filter	Activation/deactivation of the keypress beep

It is therefore possible to implement mAX/MIN PEAK in relative or pure relative only. Similarly, the HOLD mode applies to all functions and does not interfere with mAX/MIN PEAK surveillance; all it does is freeze the display. Each press is validated by an audible signal.

Functional description (continued)

The measured signal changes to $250 \mathrm{~V}, 50 \mathrm{~Hz}$:

Functional description (continued)

Mode Δ REL

Examples of display

in the VAC+DC Measured signal: $1 \mathrm{~V}, 100 \mathrm{~Hz}$:
function

Activation of the
$\triangle R E L$ mode by a short press on the \triangle REL key:

The signal changes to $1.5 \mathrm{~V}(\Delta \mathrm{REL}=1.5 \mathrm{~V}-1 \mathrm{~V}=0.5 \mathrm{~V})$

De-activation of the
$\triangle R E L$ mode by a press on the
\square
\triangle REL
key:

A long press on the

\triangle REL

key erases the reference value and exits from the $\triangle R E L$ mode.

Functional description (continued)

Functions
of the switch and keys
 A functions, set the switch to the function chosen.

Here are the possible combinations according to the type of measurement:

Type of measurement	Max/Min	Peak \pm	Δ REL		Range		HOLD	
					Auto.	Manu.		
Voltage VLowz Voltage VAC Voltage VAC+DC Current AAC, AAC+DC	\checkmark	\checkmark	\checkmark	in \triangle REL only	\checkmark	\checkmark	\checkmark	\checkmark
Voltage VDC Current Adc	\checkmark	-	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	-
Voltage 60mVdc	\checkmark	-	\checkmark	\checkmark	-	\checkmark	\checkmark	-
Voltage 60 mV AC Voltage $60 \mathrm{mVAC}+\mathrm{DC}$	\checkmark	\checkmark	\checkmark		-	\checkmark	\checkmark	\checkmark
Temperature	\checkmark	-	\checkmark		\checkmark	\checkmark	\checkmark	-
Ohmmeter	\checkmark	-	\checkmark	in $\triangle R E L$ only	\checkmark	\checkmark	\checkmark	-
Capacitance	\checkmark	-	\checkmark		\checkmark	\checkmark	\checkmark	-
Frequency	\checkmark	-	\checkmark		\checkmark	-	\checkmark	-
Period (1/F)	-	-	-	-	\checkmark	-	\checkmark	-
Continuity	-	-	-	-	\checkmark	-	-	-
Diode	-	-	-	-	\checkmark	-	\checkmark	-

Functional description (continued)

Preparation for use
 Instructions before starting up

Power supply

When you use this multimeter, you must observe the usual safety rules, which:

- protect you from electrical hazards,
- protect the multimeter from operator errors.

For your safety, use only the leads supplied with the instrument. Before each use, make sure that they are in perfect condition.

Powering up, down

Switching on

line power at $230 \mathrm{~V} \pm 10 \%$ (US version, $110 \mathrm{~V} \pm 10 \%$) ; 45 Hz to 65 Hz The power connector is on the back of the instrument. (The earth connection serves to carry currents to earth).

Use the power On/Off switch on the back of the instrument to power it up.
A check light on the front of the instrument indicates that it is powered up.

The switch is set to «OFF». Turn the switch to the function of your choice. All segments of the display unit light for a few seconds, then the screen of the function selected is displayed. The multimeter is then ready to perform measurements.

- Starting up accompanied by a simultaneous sustained press on the HOLD key (until it beeps) lights all segments of the display unit
- A second, short, press displays:
- the hardware version (A, B, C, etc.),
- the software version
- the instrument model (MX 5006 or MX 5060).
- A third short press is used to exit from the mode.

Switching to standby Set the switch to "OFF".

How are the various quantities measured?

$A C+D C$: $A C$ voltage measurement, or measurement of an $A C$ voltage superposed on a DC voltage, or DC voltage measurement at high impedance.

AC voltage measurement at high impedance

LowZ: \quad This position is provided to allow measurements in electrical installations. The input impedance $<1 \mathrm{M} \Omega$ serves to avoid measuring "phantom" voltages due to couplings between the lines.

In all cases, "O.L" is displayed above 1050 V and a beep sounds when the measurement exceeds 600V.

1. Set the switch to $V_{\text {Lowz }}$ or $V_{A C+D C}$ or $V_{A C}$.
2. Select $A C+D C$ or $D C$ coupling of the signal by pressing | $M O D E$ |
| :---: | :---: |
| $A C / D C$ | (the default coupling is $A C+D C)$.

Depending on what you select, the screen displays DC or AC+DC.
3. Connect the black lead to the "COM" terminal and the red lead to " + ".
4. Place the test probes on the terminals of the circuit to be measured:

5. Read the measurement value indicated on the display unit.
6. As default, the 2nd display unit indicates the frequency, except in DC.

Remark: It is possible to activate the filter in VLowz, VAC+DC, VAC. The cutoff frequency of the filter is $\leq 300 \mathrm{~Hz}$.

When a voltage having a frequency above 150 Hz is measured, it is heavily attenuated, and so a large error may be observed. It is necessary in this case to deactivate the filter to have the full bandwidth.

How are the various quantities measured? (continued)

2. Current measurement

1. Set the switch to \square
2. Select the type of signal, $A C+D C, A C$, or $D C$, by pressing MODE

AC/DC. Depending on what you select, the screen displays $A C, D C$, or $A C+D C$.
3. Connect the black lead to the "COM" terminal and the red lead to "A".
4. Place the test probes in series between the source and the load:

5 Read the measurement value indicated on the display unit.
"O.L" is displayed, if $I>20 A$.

6 As default, the 2nd display unit indicates the frequency, except in DC.

Remark: It is possible to activate the filter in AAC+DC, AAC. The cutoff frequency of the filter is $\leq 300 \mathrm{~Hz}$.

When a voltage having a frequency above 150 Hz is measured, it is heavily attenuated, and so a large error may be observed. It is necessary in this case to deactivate the filter to have the full bandwidth.

How are the various quantities measured? (continued)

3. Frequency measurement

1. Set the switch to Hz .
2. Connect the black lead to the "COM" terminal and the red lead to " + ".
3. Place the test probes on the terminals of the circuit to be measured.
e. Connect the instrument as for a voltage measurement
4. Read the measurement value indicated on the display unit.
5. Press $\begin{aligned} & \text { MODE } \\ & A C / D C \\ & \text { to obtain the period of the signal 1/F (ms). }\end{aligned}$

4. Resistance measurement

5. Audible
 continuity
 measurement

1. Set the switch to \square
2. Connect the black lead to the "COM" terminal and the red lead to " + ".
3. Place the test probes on the terminals of the component.

Remark: Resistance measurements must be made with power off. However, while the presence of a voltage will prevent or throw off the measurement, it will not damage the instrument.

4. Read the measurement value indicated on the display unit.
5. "O.L" is displayed, if the circuit is open.

1. Set the switch to \square
2. Press $\begin{gathered}M O D E \\ A C / D C \\ \text {; the " } \bullet(1) \text {)" symbol is displayed. }\end{gathered}$
3. Connect the black lead to the "COM" terminal and the red lead to " + ".
4. Place the test probes on the terminals of the circuit to be measured.

Connect the instrument as for a voltage measurement.
5. Read the measurement value indicated on the display unit.
6. The continuity beep sounds when $R<30 \Omega \pm 3 \Omega$.
7. "O.L" is displayed, if the circuit is open.

How are the various quantities measured? (continued)

6. Diode test

1. Set the switch to
```
0.1)) }->
```

2. Press $A C / D C$ twice; the "-1" symbol is displayed.
3. Connect the black lead to the "COM" terminal and the red lead to " + ".
4. Place the test probes on the terminals of the component:

5. Read the measured threshold voltage of the junction indicated on the display unit.
6. "O.L" is displayed, if the circuit is open or the threshold of the diode $>3 \mathrm{~V}$.

7. Capacitance measurement

1. Set the switch to \square
2. Connect the black lead to the "COM" terminal and the red lead to "+".
3. Place the test probes on the terminals of the component:

4. Read the measurement value indicated on the display unit.
"O.L" is displayed, if the value to be measured exceeds the capacitance of the range.
"O.L" is displayed, if the capacitor is short-circuited.
$>$ For high values, the measurement cycle includes the display of "run" with a "chaser" decimal point. This means that acquisition is in progress; wait for the display of the digital result.

"Run" is displayed immediately, if the previous measurement was in a small range.

> The prior discharge of very high capacitances helps shorten the measurement time.

How are the various quantities measured? (continued)

8. Temperature measurement
9. Set the switch to \square T°
10. Press $\begin{aligned} & M O D E \\ & A C / D C\end{aligned}$ to switch the temperature unit $\left({ }^{\circ} \mathrm{C}\right.$ or $\left.{ }^{\circ} \mathrm{F}\right)$ between the two display units.
(6) The unit displayed as default on the main display unit is ${ }^{\circ} \mathrm{C}$.
11. Connect the temperature probe (K thermocouple) to the "COM" and "+" terminals, bearing the polarity in mind:

12. Read the measurement value indicated on the display unit.

If "O.L" is displayed, the thermocouple is open-circuit or the value to be measured exceeds the capacitance of the range.
If the inputs are short-circuited, the instrument displays the ambient temperature.

Remark: For greater accuracy, avoid exposing the instrument to sudden changes of temperature.

How are the various quantities measured? (continued)

9. Measurement on an MLI type speed variator

Voltage measurement

1. Set the switch to \qquad
2. Select the filter by pressing

3. Connect the black lead to the "COM" terminal and the red lead to " + ".
4. Place the test probes between two phases of the circuit to be measured:

5. Read the measurement values indicated on the display unit (voltage and frequency):
"O.L" is displayed above 1050 V and a beep sounds when the measurement exceeds 600V.
The presence of the
symbol indicates that the filter is active.
Remark: It is very important to leave the filter activated to measure the voltage and frequency of the signal without being perturbed by the MLI.

Technical characteristics of the MX 5006

Accuracy: Only values with tolerances or limits are guaranteed values. " $n \%+n D$ " means Values without tolerances are given for guidance (standard NFC42670). " $n \%$ of the reading The technical specifications are guaranteed only after 30 minutes of warming up. Except $+n$ Digit" as otherwise indicated, they are valid from 5\% to 100\% (cf. CEI485) of the measurement range.				
VOLTAGES	Protection: 1414Vpk			
DC voltage				
VDC	Range	Specified measurement range	Resolution	Intrinsic error
	600 mV	0 to 600.0 mV	0.1 mV	0.5% L + 2 D
	6 V	0 to 6.000V	0.001 V	0.09\% L + 2 D
	60 V	0 to 60.00 V	0.01 V	
	600 V	0 to 600.0V	0.1 V	
	1000V *	0 to 1000 V	1 V	

(*) The display indicates "+OL" above +1050 V and "-OL" below -1050 V .

AC voltage

VLowZ AC RMS The bandwidth is reduced to 300 Hz if the filter is activated. The frequency measurement is made like a measurement in a 300 Hz PB.

Range	Operating range	Specified measurement range ${ }^{3)}$	Resolution	Uncertainty (\pm)	Additional uncertainty $F(H z)^{1)}$	Input impedance $1 /<50 \mathrm{pF}$	Peak factor
600mV	$\begin{gathered} 0 \text { to } \\ 600.0 \mathrm{mV} \end{gathered}$	$\begin{gathered} 60.0 \text { to } \\ 600.0 \mathrm{mV} \end{gathered}$	0.1 mV	$\begin{gathered} 1.2 \% \mathrm{~L}+ \\ 0.25 \% \mathrm{x} \\ {[\mathrm{~F}(\mathrm{kHz})-1] \mathrm{L}} \\ \pm 5 \mathrm{D} \end{gathered}$	$\begin{gathered} 45<\mathrm{F}<65 \mathrm{~Hz} \\ 0.3 \% \mathrm{~L} \\ \text { typ. } \end{gathered}$	$\cong 520 \mathrm{k} \Omega$	$\begin{gathered} 3 \text { to } \\ 500 \mathrm{mV} \end{gathered}$
6 V	$\begin{gathered} 0 \text { to } \\ 6.000 \mathrm{~V} \end{gathered}$	0.600 to 6.000 V	0.001 V	$\begin{gathered} 1.2 \% \mathrm{~L}+ \\ 0.18 \% \mathrm{x} \\ {[\mathrm{~F}(\mathrm{kHz})-1] \mathrm{L}} \\ \pm 3 \mathrm{D} \end{gathered}$	$\begin{gathered} \text { at } 100 \mathrm{~Hz} \\ 0.7 \% \mathrm{~L} \\ \text { typ. } \end{gathered}$		3 to 5 V
60V	$\begin{gathered} 0 \text { to } \\ 60.00 \mathrm{~V} \end{gathered}$	$\begin{aligned} & 6.00 \text { to } \\ & 60.00 \mathrm{~V} \end{aligned}$	0.01V		at 150 Hz		3 to 50V
600V	$\begin{gathered} 0 \text { to } \\ 600.0 \mathrm{~V} \end{gathered}$	$\begin{aligned} & 60.0 \text { to } \\ & 600.0 \mathrm{~V} \end{aligned}$	0.1V		at 300 Hz		3 to 500V
$1000 \mathrm{~V}^{2)}$	$\begin{gathered} 0 \text { to } \\ 1000 \mathrm{~V} \end{gathered}$	60 to 1000V	1V		typ.		$\begin{aligned} & 1,42 \text { to } \\ & 1000 \mathrm{~V} \end{aligned}$

1) See the typical curve of the 300 Hz filter on $p .29$.
2) The LCD indicates "+OL" above +1050V, "-OL" below -1050V or above 1050VRMS.
3) From 1 kHz , the measurement must exceed 15% of the range

Secondary measurements and displays: FREQ (AC coupling), MAX, MIN, PEAK

Technical characteristics of the MX 5006 (continued)

VAc RMS	Range	Operating range	$\begin{gathered} \text { Specified } \\ \text { measurement } \\ \text { range }^{3)} \end{gathered}$	Resolution	Uncertainty (\pm	Additional uncertainty $\mathrm{F}(\mathrm{Hz})^{1)}$	Bandwidth	@ 1kHz Input impedance // < 50 pF	Peak factor
	600mV	$\begin{gathered} 0 \text { to } \\ 600.0 \mathrm{mV} \end{gathered}$	$\begin{gathered} 60.0 \text { to } \\ 600.0 \mathrm{mV} \end{gathered}$	0.1 mV	$\left\|\begin{array}{c} 1 \% L+ \\ 0.25 \% x \\ {[F(\mathrm{kHz})-1] \mathrm{L}} \\ \pm 5 \mathrm{D} \end{array}\right\|$	$\begin{gathered} 45<\mathrm{F}<65 \mathrm{~Hz} \\ 0.3 \% \mathrm{~L} \\ \text { typ. } \end{gathered}$	$\begin{gathered} 10 \mathrm{~Hz} \text { to } \\ 50 \mathrm{kHz} \end{gathered}$	10.9M	$\begin{gathered} 3 \mathrm{to} \\ 500 \mathrm{mV} \end{gathered}$
	6 V	$\begin{gathered} 0 \text { to } \\ 6.000 \mathrm{~V} \end{gathered}$	$\begin{aligned} & 0.600 \text { to } \\ & 6.000 \mathrm{~V} \end{aligned}$	0.001V	$1 \% \mathrm{~L}+$ $0.18 \% \mathrm{x}$ [$\mathrm{F}(\mathrm{kHz}$)- 1]L $\pm 3 \mathrm{D}$	$\begin{gathered} \text { at } 100 \mathrm{~Hz} \\ 0.7 \% \mathrm{~L} \\ \text { typ. } \end{gathered}$	$\begin{aligned} & 10 \mathrm{~Hz} \text { to } \\ & 100 \mathrm{kHz} \end{aligned}$	10.9M Ω	3 to 5 V
	60V	$\begin{gathered} 0 \text { to } \\ 60.00 \mathrm{~V} \end{gathered}$	$\begin{aligned} & 6.00 \text { to } \\ & 60.00 \mathrm{~V} \end{aligned}$	0.01 V		$\begin{gathered} \text { at } 150 \mathrm{~Hz} \\ \begin{array}{c} 1.8 \% \mathrm{~L} \\ \text { typ. } \end{array} \end{gathered}$		10.082M 2	3 to 50 V
	600 V	$\begin{gathered} 0 \text { to } \\ 600.0 \mathrm{~V} \end{gathered}$	$\begin{aligned} & 60.0 \text { to } \\ & 600.0 \mathrm{~V} \end{aligned}$	0.1 V		at 300 Hz		10.008M	$\begin{gathered} 3 \text { to } \\ 500 \mathrm{~V} \end{gathered}$
	$1000 \mathrm{~V}^{2)}$	$\begin{gathered} 0 \text { to } \\ 1000 \mathrm{~V} \end{gathered}$	$\begin{gathered} 60 \text { to } \\ 1000 \mathrm{~V} \end{gathered}$	1V				10.008M	$\begin{aligned} & 1.42 \text { to } \\ & 1000 \mathrm{~V} \end{aligned}$

1) See the typical curve of the 300 Hz filter on p. 29 .
2) The LCD indicates "+OL" above +1050 V , "-OL" below -1050 V or above 1050VRMS.
3) From 1 kHz , the measurement must exceed 15% of the range

Secondary measurements and displays: FREQ (AC coupling), MAX, MIN, PEAK

AC and DC voltage AC+DC TRMS

Range	Operatin g range	Specified measurement range ${ }^{3)}$	Resolution	Uncertainty $D C(\pm)$	Uncertainty AC (\pm)	Additional uncertainty $F(H z)^{1)}$	Bandwidth	Input impedance // < 50 pF	Peak factor
600 mV	$\begin{gathered} 0 \text { to } \\ 600.0 \mathrm{mV} \end{gathered}$	$\begin{gathered} 60.0 \text { to } \\ 600.0 \mathrm{mV} \end{gathered}$	0.1 mV	$\begin{gathered} 0.8 \% \mathrm{~L} \\ \pm 10 \mathrm{D} \end{gathered}$	$\begin{gathered} 0.8 \% \mathrm{~L}+ \\ 0.18 \% \mathrm{x} \\ {[\mathrm{~F}(\mathrm{kHz})-1]} \\ \mathrm{L} \pm 5 \mathrm{D} \end{gathered}$	$\begin{gathered} 45<\mathrm{F}<65 \mathrm{~Hz} \\ 0.3 \% \mathrm{~L} \\ \text { typ. } \end{gathered}$	$\begin{gathered} 10 \mathrm{~Hz} \\ \text { to } \\ 50 \mathrm{kHz} \end{gathered}$	$10.9 \mathrm{M} \Omega$	$\begin{gathered} 3 \text { to } \\ 500 \mathrm{mV} \end{gathered}$
6 V	$\begin{gathered} 0 \text { to } \\ 6.000 \mathrm{~V} \end{gathered}$	$\begin{aligned} & 0.600 \text { to } \\ & 6.000 \mathrm{~V} \end{aligned}$	0.001V		$\begin{gathered} 0.8 \% \mathrm{~L}+ \\ 0.18 \% \mathrm{x} \\ {[\mathrm{~F}(\mathrm{kHz})-1]} \\ \mathrm{L} \\ \pm 3 \mathrm{D} \end{gathered}$	$\begin{gathered} \text { at } 100 \mathrm{~Hz} \\ 0.7 \% \mathrm{~L} \\ \text { typ. } \end{gathered}$	$\begin{gathered} 10 \mathrm{~Hz} \\ \text { to } \\ 100 \mathrm{kHz} \end{gathered}$	$10.9 \mathrm{M} \Omega$	$\begin{aligned} & 3 \text { to } \\ & 5 \mathrm{~V} \end{aligned}$
60V	$\begin{gathered} 0 \text { to } \\ 60.00 \mathrm{~V} \end{gathered}$	$6.00 \text { to }$ $60.00 \mathrm{~V}$	0.01V					10.082M Ω	$\begin{aligned} & 3 \text { to } \\ & 50 \mathrm{~V} \end{aligned}$
600V	$\begin{gathered} 0 \text { to } \\ 600.0 \mathrm{~V} \end{gathered}$	$\begin{aligned} & 60.0 \text { to } \\ & 600.0 \mathrm{~V} \end{aligned}$	0.1V			at 300 Hz		$10.008 \mathrm{M} \Omega$	$\begin{gathered} 3 \text { to } \\ 500 \mathrm{~V} \end{gathered}$
$1000 \mathrm{~V}$	$\begin{gathered} 0 \text { to } \\ 1000 \mathrm{~V} \end{gathered}$	60 to 1000V	1V			typ.		$10.008 \mathrm{M} \Omega$	$\begin{aligned} & 1.42 \text { to } \\ & 1000 \mathrm{~V} \end{aligned}$

1) See the typical curve of the 300 Hz filter on p. 29 .
2) The LCD indicates "+OL" above +1050 V , "-OL" below -1050 V or above 1050 VRMS .
3) From 1 kHz , the measurement must exceed 15% of the range

Secondary measurements and displays: FREQ (AC coupling), MAX, MIN, PEAK

Technical characteristics of the MX 5006 (continued)

CURRENTS

DC current

Particular reference conditions:

$\mu \mathrm{A}$ range: Measuring a strong current for a long time can cause a temperature rise in some components. In this case, it is necessary to wait some time for the metrological characteristics specified in $\mu \mathrm{A}$ to be restored.

Adc

Range	Operating range	Specified measurement range	Resolution	Uncertainty (\pm)	Voltage drop	Protection
6000 $\mu \mathrm{A}$	0 to $6000 \mu \mathrm{~A}$	2 to $6000 \mu \mathrm{~A}$	$1 \mu \mathrm{~A}$	0.8\% L $\pm 5 \mathrm{D}$	$25 \mathrm{mV} / \mathrm{mA}$	$\begin{gathered} \text { 11A/1000V } \\ \text { fuse } \\ >20 \mathrm{kA} \end{gathered}$
60mA	0 to 60.00 mA	0.02 to 60.00 mA	0.01 mA	0.8\% L $\pm 2 \mathrm{D}$	$3 \mathrm{mV} / \mathrm{mA}$	
600mA	0 to 600.0 mA	0.2 to 600.0 mA	0.1 mA	0.8\% L $\pm 2 \mathrm{D}$	$0.58 \mathrm{mV} / \mathrm{mA}$	
6A	0 to 6.000A	0.200 to 6.000 A	0.001 A	0.8\% L $\pm 3 \mathrm{D}$	0.05V/A	
10A / 20A*	0 to 20.00A	0.20 to 20.00A	0.01A	0.8\% L $\pm 2 \mathrm{D}$	0.05V/A	

The display indicates "OL" above 19.99A. The symbol blinks and a beep sounds above 10A.
(*) Acceptable overload: 10A to 20A for 30 s max. with a pause of 5 min between 2 measurements. Ambient temp. $35^{\circ} \mathrm{C}$ max.

AC current

AAc RMS	Range	Operating range	$\begin{gathered} \text { Specified } \\ \text { measurement } \\ \text { range } \end{gathered}$	Resolution	$\begin{gathered} \text { Uncertainty }(\pm) \\ 40 \mathrm{~Hz} \text { to } 20 \mathrm{kHz} \\ (* *) \end{gathered}$	Peak factor	Voltage drop	Protection
	6000رA	$\begin{gathered} 0 \text { to } \\ 6000 \mu \mathrm{~A} \end{gathered}$	60 to $6000 \mu \mathrm{~A}$	$1 \mu \mathrm{~A}$	1.2\% L $\pm 5 \mathrm{D}$	$\begin{gathered} 2.6 \text { to } \\ 5 \mathrm{~mA} \end{gathered}$	$25 \mathrm{mV} / \mathrm{mA}$	$\begin{gathered} \text { Fuse } \\ 11 \mathrm{~A} / 1000 \mathrm{~V} \\ >20 \mathrm{kA} \end{gathered}$
	60mA	$\begin{gathered} 0 \text { to } \\ 60.00 \mathrm{~mA} \end{gathered}$	$\begin{gathered} 6.00 \text { to } \\ 60.00 \mathrm{~mA} \end{gathered}$	0.01 mA	1\% L $\pm 3 \mathrm{D}$	$\begin{aligned} & 2.6 \text { to } \\ & 50 \mathrm{~mA} \end{aligned}$	$3 \mathrm{mV} / \mathrm{mA}$	
	600mA	$\begin{gathered} 0 \text { to } \\ 600.0 \mathrm{~mA} \end{gathered}$	60.0 to 60.0 mA	0.1 mA		$\begin{gathered} 2.6 \text { to } \\ 500 \mathrm{~mA} \end{gathered}$	$0.58 \mathrm{mV} / \mathrm{mA}$	
	6 A	$\begin{gathered} 0 \text { to } \\ 6.000 \mathrm{~A} \end{gathered}$	$\begin{aligned} & 0.600 \text { to } \\ & 6.000 \mathrm{~A} \end{aligned}$	0.001 A	1.2\% L $\pm 5 \mathrm{D}$	2.8 to 5 A	$0.05 \mathrm{~V} / \mathrm{mA}$	
	10 A / 20 A*	$\begin{gathered} 0 \text { to } \\ 20.00 \mathrm{~A} \end{gathered}$	$\begin{aligned} & 1.00 \text { to } \\ & 10.00 \mathrm{~A} \end{aligned}$	0.01 A	1\% L $\pm 3 \mathrm{D}$	3.7 to 8 A	$0.05 \mathrm{~V} / \mathrm{mA}$	

The display indicates "OL" above 19.99A. The symbol blinks and a beep sounds above 10A.
Secondary measurements and displays: FREQ (AC coupling) MAX, MIN, PEAK ${ }^{(*)}$ Acceptable overload: 10A to 20A for 30s max. with a pause of 5 min between 2 measurements. Ambient temp. $35^{\circ} \mathrm{C}$ max.
${ }^{(* *)}$ Additional uncertainty with the 300 Hz filter: see curve on p.29.

Technical characteristics of the MX 5006 (continued)

AC and DC current Warning: the sum AC+DC must never exceed the range, 600 mA , or 60 mA , or $6000 \mu \mathrm{~A}$, or 6 A , or 10 A , as the case may be.
The AC component must represent at least 5% of the amplitude of the $A C+D C$ total for it to be possible to measure it.

AAC+DC TRMS	Range	Operating range	Specified measurement range	Resolution	Uncertainty AC 40 Hz à 20 kHz (\pm) (**)	Additional uncertainty DC (\pm)	Peak factor	Voltage drop	Protection
	6000 $\mu \mathrm{A}$	$\begin{gathered} 0 \text { to } \\ 6000 \mu \mathrm{~A} \end{gathered}$	$\begin{gathered} 60 \text { to } \\ 6000 \mu \mathrm{~A} \end{gathered}$	$1 \mu \mathrm{~A}$	$\begin{gathered} 1.2 \% \mathrm{~L}+ \\ 0.08 \% \mathrm{x} \\ {[\mathrm{~F}(\mathrm{kHz})-1] \mathrm{L}} \\ \pm 5 \mathrm{D} \end{gathered}$	± 15 D	2.6 to 5 mA	$25 \mathrm{mV} / \mathrm{mA}$	$\begin{array}{\|c\|} \text { Fuse } \\ 11 \mathrm{~A} / 1000 \mathrm{~V} \\ >20 \mathrm{kA} \end{array}$
	60mA	$\begin{gathered} 0 \text { to } \\ 60.00 \mathrm{~mA} \end{gathered}$	$\begin{gathered} 6.00 \text { to } \\ 60.00 \mathrm{~mA} \end{gathered}$	0.01 mA	$\begin{gathered} 1 \% L+ \\ 0.08 \% x \\ [F(\mathrm{kHz})-1)] \mathrm{L} \\ \pm 3 \mathrm{D} \end{gathered}$	$\pm 13 \mathrm{D}$	$\begin{aligned} & 2.6 \text { to } \\ & 50 \mathrm{~mA} \end{aligned}$	$3 \mathrm{mV} / \mathrm{mA}$	
	600mA	$\begin{gathered} 0 \text { to } \\ 600.0 \mathrm{~mA} \end{gathered}$	60.0 to 60.0 mA	0.1 mA			$\begin{gathered} 2.6 \text { to } \\ 500 \mathrm{~mA} \end{gathered}$	$0.58 \mathrm{mV} / \mathrm{mA}$	
	6A	$\begin{gathered} 0 \text { to } \\ 6.000 \mathrm{~A} \end{gathered}$	$\begin{aligned} & \text { 0.600A to } \\ & 6.000 \mathrm{~A} \end{aligned}$	0.001A	$\begin{gathered} 1.2 \% \mathrm{~L}+ \\ 0.08 \% \mathrm{x} \\ {[\mathrm{~F}(\mathrm{kHz})-1] \mathrm{L}} \\ \pm 5 \mathrm{D} \end{gathered}$	$\pm 10 \mathrm{D}$	2.8 to 5A	0.05V/mA	
	10A /20A*	$\begin{gathered} 0 \text { to } \\ 20.00 \mathrm{~A} \end{gathered}$	$\begin{aligned} & 0.60 \mathrm{~A} \text { to } \\ & 20.00 \mathrm{~A} \end{aligned}$	0.01A	$\begin{gathered} 1 \% L+ \\ 0.08 \% x \\ {[F(\mathrm{kHz})-1] \mathrm{L}} \\ \pm 3 \mathrm{D} \end{gathered}$	$\pm 10 \mathrm{D}$	3.7 to 8A	0.05V/mA	

The display indicates "OL" above 19.99A. The symbol blinks and a beep sounds above 10A.
Secondary measurements and displays: FREQ (AC coupling) MAX, MIN, PEAK (*) Acceptable overload: 10A to 20A for 30s max. with a pause of 5 min between 2 measurements. Ambient temp. $35^{\circ} \mathrm{C}$ max.
$(* *)$ Additional uncertainty with the 300 Hz filter: see curve on p.29.

Frequency

Protection: 1414Vpk

Particular reference conditions: $150 \mathrm{mV}<\mathrm{U}<600 \mathrm{~V}$
When the switch is set to Hz , the 300 Hz filter is not in service.
Switch set to "Hz",
measurement of
the frequency
of a voltage

Range	Operating range	Specified measurement range	Resolution	Intrinsic error
60 Hz	10.00 to 60.00 Hz	10.00 to 60.00 Hz	0.01 Hz	
600 Hz	10.0 to 600.0 Hz	10.0 to 600.0 Hz	0.1 Hz	$0.1 \% \mathrm{~L} \pm 1 \mathrm{D}$
6 kHz	0 to 6.000 kHz	0.010 to 6.000 kHz	0.001 kHz	
60 kHz	0 to 60.00 kHz	0.01 to 60.00 kHz	0.01 kHz	

Below 10 Hz , or if the signal detection level is inadequate, the reading is forced to 0 .

b Measurement of the period in ms can be accessed using the $\xlongequal{\text { MOCDE }}$ key.

Frequency voltage or frequency current simultaneously, (secondary display)

Particular reference conditions:
Max. frequency measurable in volts:
$150 \mathrm{mV}<\mathrm{U}<600 \mathrm{~V}$
$0.15 \mathrm{~A}<\mathrm{I}<10 \mathrm{~A}$
60 kHz
Max. frequency measurable in amperes: 60 kHz
When the switch is set to VLowZ, Volts or Ampere, if the 300 Hz filter is activated, the measurable frequency remains within the limits of the PB of the filter.
Below 10 Hz , or if the signal detection level is inadequate, the reading is forced to "----".

Technical characteristics of the MX 5006 (continued)

Resistance

Audible

 continuity
Protection: 1414Vpk

Particular reference conditions:
The (+COM) input must not have been overloaded following the accidental application of a voltage to the input terminals with the switch set to Ω or T°.
If this happens, the return to normal may take about ten minutes.

Range	Specified measurement range	Resolution	Uncertainty	Measurement current	Open-circuit voltage
600Ω	0 to 600.0』 *	0.1Ω	0.4\% L $\pm 2 \mathrm{D}$	$\approx 1 \mathrm{~mA}$	< 5V
$6 \mathrm{k} \Omega$	0 to $6.000 \mathrm{k} \Omega$	$0.001 \mathrm{k} \Omega$	0.4\% L $\pm 2 \mathrm{D}$	$\approx 126.6 \mu \mathrm{~A}$	
$60 \mathrm{k} \Omega$	0 to $60.00 \mathrm{k} \Omega$	$0.01 \mathrm{k} \Omega$		$\approx 12.6 \mu \mathrm{~A}$	
600k 2	0 to $600.0 \mathrm{k} \Omega$	$0.1 \mathrm{k} \Omega$		$\approx 1.26 \mu \mathrm{~A}$	
$6 \mathrm{M} \Omega$	0 to $6.000 \mathrm{M} \Omega$	$0.001 \mathrm{M} \Omega$	1.5\% L $\pm 3 \mathrm{D}$	$\approx 240 \mathrm{nA}$	
$60 \mathrm{M} \Omega$	0 to $60.00 \mathrm{M} \Omega$	$0.01 \mathrm{M} \Omega$	3\% L $\pm 3 \mathrm{D}$	$\approx 29 \mathrm{nA}$	

(*) REL measurement
Protection: 1414Vpk. Response time < 100ms

Range	Resolution	Uncertainty	Open-circuit voltage	Measurement current
600Ω	0.1Ω	Audible signal triggered $<30 \Omega \pm 5 \Omega$	$<5 \mathrm{~V}$	$<1.1 \mathrm{~mA}$

Diode Test

Protection: 1414Vpk

Range	Resolution	Uncertainty	Open-circuit voltage	Measurement current
3 V	1 mV	Audible signal triggered $<40 \mathrm{mV} \pm 10 \mathrm{mV}$	$<5 \mathrm{~V}$	$<1.1 \mathrm{~mA}$

Capacitance

Protection: 1414Vpk

Range	Operating range	Specified measurement range	Resolution	Intrinsic error	Measurement current	Measurement time
6 nF	0.100 to 6.000 nF	0.100 to 6.000 nF	0.001 nF	$2 \% \mathrm{~L} \pm 15 \mathrm{D}$	$\approx 1,26 \mu \mathrm{~A}$	$\approx 400 \mathrm{~ms}$
60 nF	0 to 60.00 nF	0 to 60.00 nF	0.01 nF	$1 \% \mathrm{~L} \pm 8 \mathrm{D}$	$\approx 1,26 \mu \mathrm{~A}$	$\approx 400 \mathrm{~ms}$
600 nF	0 to 600.0 nF	0 to 600.0 nF	0.1 nF	$1 \% \mathrm{~L} \pm 5 \mathrm{D}$	$\approx 1.26 \mu \mathrm{~A}$	$\approx 400 \mathrm{~ms}$
$6 \mu \mathrm{~F}$	0 to $6.000 \mu \mathrm{~F}$	0 to $6.000 \mu \mathrm{~F}$	$0.001 \mu \mathrm{~F}$	$1 \% \mathrm{~L} \pm 5 \mathrm{D}$	$\approx 12.6 \mu \mathrm{~A}$	$\approx 0.125 \mathrm{~s} / \mu \mathrm{F}$
$60 \mu \mathrm{~F}$	0 to $60.00 \mu \mathrm{~F}$	0 to $60.00 \mu \mathrm{~F}$	$0.01 \mu \mathrm{~F}$	$1 \% \mathrm{~L} \pm 5 \mathrm{D}$	$\approx 126.6 \mu \mathrm{~A}$	$\approx 0.125 \mathrm{~s} / \mu \mathrm{F}$
$600 \mu \mathrm{~F}$	0 to $600.0 \mu \mathrm{~F}$	0 to $600.0 \mu \mathrm{~F}$	$0.1 \mu \mathrm{~F}$	$3 \% \mathrm{~L} \pm 5 \mathrm{D}$	$\approx 1 \mathrm{~mA}$	$\approx 0.125 \mathrm{~s} / \mu \mathrm{F}$
6 mF	0 to 6.000 mF	0 to 6.000 mF	$1 \mu \mathrm{~F}$	$4 \% \mathrm{~L} \pm 5 \mathrm{D}$	$\approx 1 \mathrm{~mA}$	$\approx 17 \mathrm{~s} / \mathrm{mF}$
60 mF	0 to 60.00 mF	0 to 60.00 mF	$10 \mu \mathrm{~F}$	$6 \% \mathrm{~L} \pm 5 \mathrm{D}$	$\approx 1 \mathrm{~mA}$	$\approx 17 \mathrm{~s} / \mathrm{mF}$

The use of wires that are very short and shielded is strongly recommended.

Technical characteristics of the MX 5006 (continued)

Temperature

Protection: 1414Vpk
Particular reference conditions:
An internal temperature rise may have been caused by:
$>$ measurement of a strong current for a long time,
$>$ overload of the +COM input with the switch set to T° or Ω.
In this case, it is necessary to wait some time to recover the specified metrological characteristics.

The multimeter must be at the temperature of the room. If not, recovering the metrological characteristics may take up to 2 h . Otherwise, there may be a temperature offset, because the cold junction temperature reference is a little off.

If there is any doubt, it is possible to check by measuring a known temperature (example: ambient temperature) with the thermocouple.

Range	Operating range	Specified measurement range	Resolution	Uncertainty (\pm)
low	$-200.0^{\circ} \mathrm{C}$ to $200.0^{\circ} \mathrm{C}$	$-60.0^{\circ} \mathrm{C}$ to $200.0^{\circ} \mathrm{C}$	$0.1^{\circ} \mathrm{C}$	$0.5 \% \mathrm{~L} \pm 2^{\circ} \mathrm{C}$
	$-328.0^{\circ} \mathrm{F}$ to $392.0^{\circ} \mathrm{F}$	$-76.0^{\circ} \mathrm{F}$ to $392.0^{\circ} \mathrm{F}$	$0.1^{\circ} \mathrm{F}$	$0.5 \% \mathrm{~L} \pm 4^{\circ} \mathrm{F}$
high	$-200^{\circ} \mathrm{C}$ to $1200^{\circ} \mathrm{C}$	$-60^{\circ} \mathrm{C}$ to $1200^{\circ} \mathrm{C}$	$1^{\circ} \mathrm{C}$	$0.5 \% \mathrm{~L} \pm 2^{\circ} \mathrm{C}$
	$-328^{\circ} \mathrm{F}$ to $2192^{\circ} \mathrm{F}$	$-76^{\circ} \mathrm{F}$ to $2192^{\circ} \mathrm{F}$	$1^{\circ} \mathrm{F}$	$0.5 \% \mathrm{~L} \pm 4^{\circ} \mathrm{F}$

The stated accuracy in temperature measurement does not take into account the accuracy of the K thermocouple.
There is no upper limit on the temperature display, other than the 6000 D of the display unit.

PEAK + PEAK- Add $1 \% \mathrm{~L}+30 \mathrm{D}$ to obtain the accuracy corresponding to the function and the range. Fmax $=1 \mathrm{kHz}(1 \mathrm{~ms})$

MAX / MIN
Add $0.2 \% \mathrm{~L}+2 \mathrm{D}$ to obtain the accuracy corresponding to the function and the range. Acquisition time of the extrema: approximately 100 ms .

Operation

of the audible beep

Beep reporting a valid key \rightarrow high-pitched sound	$4 \mathrm{kHz}, 100 \mathrm{~ms}$
Beep reporting an invalid key \rightarrow low-pitched sound	$1 \mathrm{kHz}, 100 \mathrm{~ms}$
Bursts of 3 beeps separated by 5-second gaps (beep beep beep - gap - beep beep beep) reporting an overshoot of the danger threshold (600V) \rightarrow medium- pitched sound	$2 \mathrm{kHz}, 100 \mathrm{~ms}$
2 successive beeps (beep beep) reporting recording of the MAX, MIN, PEAK: \rightarrow medium-pitched sound	$2 \mathrm{kHz}, 100 \mathrm{~ms}$
Current >10A	$4 \mathrm{kHz}, 100 \mathrm{~ms}$

Technical characteristics of the MX 5006 (continued)

Variation in the nominal range of use	Quantity of influence	Range of influence	Quantity influenced	Influence	
				typical	MAX
	Temperature	$\begin{gathered} 0^{\circ} \mathrm{C} \ldots 18 \\ 28 \ldots 40^{\circ} \mathrm{C} \end{gathered}$	VdCmV	$0.01 \% \mathrm{~L} \pm 0.2 \mathrm{D} / 1^{\circ} \mathrm{C}$	$0.02 \% \mathrm{~L} \pm 0.25 \mathrm{D} / 1^{\circ} \mathrm{C}$
			VACmV, $\mathrm{V}_{\text {Lowz }} \mathrm{mb}$	$0.08 \% \mathrm{~L} \pm 0.2 \mathrm{D} / 1^{\circ} \mathrm{C}$	$0.15 \% \mathrm{~L} \pm 0.25 \mathrm{D} / 1^{\circ} \mathrm{C}$
			VDC	$0.01 \% \mathrm{~L} \pm 0.1 \mathrm{D} / 1^{\circ} \mathrm{C}$	$0.05 \% \mathrm{~L} \pm 0.1 \mathrm{D} / 1^{\circ} \mathrm{C}$
			VAC, VAC+DC VLowz		$0.15 \% \mathrm{~L} \pm 0.1 \mathrm{D} / 1^{\circ} \mathrm{C}$
			ADC	$0.05 \% \mathrm{~L} \pm 0.1 \mathrm{D} / 1^{\circ} \mathrm{C}$	$0.1 \% \mathrm{~L} \pm 0.1 \mathrm{D} / 1^{\circ} \mathrm{C}$
			AAC and AAC+DC	$0.08 \% \mathrm{~L} \pm 0.1 \mathrm{D} / 1^{\circ} \mathrm{C}$	$0.12 \% \mathrm{~L} \pm 0.1 \mathrm{D} / 1^{\circ} \mathrm{C}$
			$\rightarrow+$	$0.01 \% \mathrm{~L} \pm 0.1 \mathrm{D} / 1^{\circ} \mathrm{C}$	$0.1 \% \mathrm{~L} / 1^{\circ} \mathrm{C}$
			Ω	0.05\% L/ $1^{\circ} \mathrm{C}$	$0.1 \% \mathrm{~L} / 1^{\circ} \mathrm{C}$
			$60 \mathrm{M} \Omega$		$0.3 \% \mathrm{~L} / 1^{\circ} \mathrm{C}$
			nF, $\mu \mathrm{F}$		$0.2 \% \mathrm{~L} \pm 0.1 \mathrm{D} / 1^{\circ} \mathrm{C}$
			mF		$0.6 \% \mathrm{~L} \pm 0.1 \mathrm{D} / 1^{\circ} \mathrm{C}$
			Hz		$0.01 \% \mathrm{~L} / 1^{\circ} \mathrm{C}$
			Temperature		$\pm 2^{\circ} \mathrm{C}+0.05 \% \mathrm{~L} / 1^{\circ} \mathrm{C}$
			Stabilization time	$\approx 90 \mathrm{~min}$	2 h
	Humidity (without condensation)	10\% ... 80\% RH	$\begin{gathered} V \\ A \\ \rightarrow+ \\ \Omega\left(^{*}\right) \\ \mathrm{Hz} \end{gathered}$	0	0
	Frequency	$1 \mathrm{kHz} . . .3 \mathrm{kHz}$	VAC		4\% L
		$3 \mathrm{kHz} . . .10 \mathrm{kHz}$			6\% L

(*) excluding the $60 \mathrm{M} \Omega$ range

Response of the

 filter

Technical characteristics of the MX 5060

Accuracy:	Only values with tolerances or limits are guaranteed values.
" $n \%+n D "$ means	Values without tolerances are given for guidance (standard NFC42670).
" $n \%$ of the reading	The technical specifications are guaranteed only after 30 minutes of warming up.
$+n$ Digit"	Except as otherwise indicated, they are valid from 5% to 100% of the measurement
$(c f . ~ C E I ~ 485)$	range.

VOLTAGES

Protection: 1414Vpk

DC voltage

VDC 60 mV range: Measuring a strong current or measuring a current for a long time may cause a temperature rise of some components.

Range	Specified measurement range	Resolution	Intrinsic error
$60 \mathrm{mV}^{1)}$	0 to 60.000 mV	0.001 mV	$0.5 \% \mathrm{~L}+35 \mathrm{D}$
600 mV	0 to 600.00 mV	0.01 mV	$0.5 \% \mathrm{~L}+25 \mathrm{D}$
6 V	0 to 6.0000 V	0.0001 V	$0.0 .05 \% \mathrm{~L}+25 \mathrm{D}$
60 V	0 to 60.000 V	0.001 V	0.01 V
600 V	0 to 600.00 V	0 to 1000.0 V	0.1 V
$1000 \mathrm{~V}^{2)}$			

1) This range is accessible only with the $\stackrel{\text { RANGE }}{ }$ key. Input impedance: approx. $10.6 \mathrm{M} \Omega / / 50 \mathrm{pF}$
2) The display indicates "+OL" above +1050 V and "-OL" below -1050 V .

AC voltage

VLowZ Ac RMS The PB is reduced to 300 Hz . In VLowZ, there is no 60 mV range. The frequency measurement is made like a measurement in a 300 Hz bandwidth.

Range	Operating range	Specified measurement range ${ }^{3)}$	Resolution	Uncertainty (\pm)	Additional uncertainty $\mathrm{F}(\mathrm{Hz})^{1)}$	Input impedance $\mathrm{l} /<50 \mathrm{pF}$	Peak factor
600mV	$\begin{gathered} 0 \text { to } \\ 600.00 \mathrm{mV} \end{gathered}$	$\begin{gathered} 60.00 \text { to } \\ 600.00 \mathrm{mV} \end{gathered}$	0.01 mV	$\begin{gathered} 1 \% \mathrm{~L}+ \\ 0.25 \% \mathrm{x} \\ {[\mathrm{~F}(\mathrm{kHz})-1] \mathrm{L}} \\ \pm 30 \mathrm{D} \end{gathered}$	$\begin{gathered} 45<\mathrm{F}<65 \mathrm{~Hz} \\ 0.3 \% \mathrm{~L} \\ \text { typ. } \end{gathered}$	$\cong 520 \mathrm{k} \Omega$	$\begin{gathered} 3 \text { to } \\ 500.0 \mathrm{mV} \end{gathered}$
6V	$\begin{gathered} 0 \text { to } \\ 6.0000 \mathrm{~V} \end{gathered}$	$\begin{gathered} 0.6 \text { to } \\ 6.0000 \mathrm{~V} \end{gathered}$	0.0001V	$\begin{gathered} 0.5 \% \mathrm{~L} \\ +0.18 \% \mathrm{x} \\ {[\mathrm{~F}(\mathrm{kHz})-1] \mathrm{L}} \\ \quad \pm 25 \mathrm{D} \end{gathered}$	$\begin{gathered} \text { at } 100 \mathrm{~Hz} \\ 0.7 \% \mathrm{~L} \\ \text { typ. } \end{gathered}$		3 to 5.0 V
60V	$\begin{gathered} 0 \text { to } \\ 60.000 \mathrm{~V} \end{gathered}$	$\begin{aligned} & 6.000 \text { to } \\ & 60.000 \mathrm{~V} \end{aligned}$	0.001V				3 to 50.0 V
600 V	$\begin{gathered} 0 \text { to } \\ 600.00 \mathrm{~V} \end{gathered}$	$\begin{aligned} & 60.00 \text { to } \\ & 600.00 \mathrm{~V} \end{aligned}$	0.01V		typ.		3 to 500.0V
$1000 \mathrm{~V}^{2)}$	$\begin{aligned} & 0 \text { to } \\ & 1000.0 \mathrm{~V} \end{aligned}$	$\begin{aligned} & 60 \text { to } \\ & 1000.0 \mathrm{~V} \end{aligned}$	0.1V		30\% L typ.		$\begin{aligned} & 1.42 \text { to } \\ & 1000.0 \mathrm{~V} \end{aligned}$

1) See the typical curve of the 300 Hz filter on $p .37$.
2) The LCD indicates "+OL" above +1050V, "-OL" below -1050V or above 1050VRMS.
3) From 1 kHz , the measurement must exceed 15% of the range

Secondary measurements and displays: FREQ (AC coupling) MAX, MIN, PEAK

Technical characteristics of the MX 5060 (continued)

VAc RMS 60 mV range: Measuring a strong current or measuring a current for a long time may cause a temperature rise of some components.

Range	Operating range	\qquad	Resolution	Uncertainty \pm)	Additional uncertainty $\mathrm{F}(\mathrm{Hz})^{1)}$	Pass band	@ 1kHz Input impedance $1 /<50 \mathrm{pF}$	Peak factor
$60 \mathrm{mV}^{2)}$	$\begin{gathered} 0 \text { to } \\ 60.000 \mathrm{mV} \end{gathered}$	$\begin{gathered} 6.000 \text { to } \\ 60.000 \mathrm{mV} \end{gathered}$	0.001mV	$\begin{aligned} & 1.5 \% \mathrm{~L} \\ & \pm 35 \mathrm{D} \end{aligned}$		$\approx 400 \mathrm{~Hz}$	10.612M Ω	$\begin{gathered} 3 \text { to } \\ 50.0 \mathrm{mV} \end{gathered}$
600mV	$\begin{gathered} 0 \text { to } \\ 600.00 \mathrm{mV} \end{gathered}$	$\begin{gathered} 60.00 \text { to } \\ 600.00 \mathrm{mV} \end{gathered}$	0.01 mV	$\begin{gathered} 1 \% \mathrm{~L} \\ +0.25 \% \mathrm{x} \\ {[\mathrm{~F}(\mathrm{kHz})-1] \mathrm{L}} \\ \pm 30 \mathrm{D} \end{gathered}$	$\begin{gathered} 45<\mathrm{F}<65 \mathrm{~Hz} \\ 0.3 \% \mathrm{~L} \\ \text { typ. } \end{gathered}$	$\begin{gathered} 10 \mathrm{~Hz} \text { to } \\ 50 \mathrm{kHz} \\ (\approx 23 \% \\ @ 100 \mathrm{kHz}) \end{gathered}$	10.9M Ω	$\begin{gathered} 3 \text { to } \\ 500.0 \mathrm{mV} \end{gathered}$
6 V	$\begin{gathered} 0 \text { to } \\ 6.0000 \mathrm{~V} \end{gathered}$	$\begin{gathered} 0.6 \text { to } \\ 6.0000 \mathrm{~V} \end{gathered}$	0.0001V	$\begin{gathered} 0.5 \% \mathrm{~L} \\ +0.18 \% \mathrm{x} \\ {[\mathrm{~F}(\mathrm{kHz})-1] \mathrm{L}} \\ \pm 25 \mathrm{D} \end{gathered}$	$\begin{aligned} & \text { à } 100 \mathrm{~Hz} \\ & 0.7 \% \mathrm{~L} \\ & \text { typ. } \end{aligned}$	10 Hz to 100kHz	10.9M Ω	3 to 5.0V
60V	$\begin{gathered} 0 \text { to } \\ 60.000 \mathrm{~V} \end{gathered}$	$\begin{aligned} & 6.000 \text { to } \\ & 60.000 \mathrm{~V} \end{aligned}$	0.001 V		$\begin{gathered} \text { à } 150 \mathrm{~Hz} \\ 1.8 \% \mathrm{~L} \\ \text { typ. } \\ \text { à } 300 \mathrm{~Hz} \\ 30 \% \mathrm{~L} \\ \text { typ. } \end{gathered}$		$10.082 \mathrm{M} \Omega$	$\begin{gathered} 3 \text { to } \\ 50.0 \mathrm{~V} \end{gathered}$
600V	$\begin{aligned} & 0 \text { to } \\ & 600.00 \mathrm{~V} \end{aligned}$	$\begin{aligned} & 60.00 \text { to } \\ & 600.00 \mathrm{~V} \end{aligned}$	0.01 V				$10.008 \mathrm{M} \Omega$	$\begin{gathered} 3 \text { to } \\ 500.0 \mathrm{~V} \end{gathered}$
$1000 \mathrm{~V}^{3)}$	$\begin{aligned} & 0 \text { to } \\ & 1000.0 \mathrm{~V} \end{aligned}$	$\begin{gathered} 60 \text { to } \\ 1000.0 \mathrm{~V} \end{gathered}$	0.1V				$10.008 \mathrm{M} \Omega$	$\begin{gathered} 1.42 \text { to } \\ 1000.0 \mathrm{~V} \end{gathered}$

1) See the typical curve of the 300 Hz filter on p. 37.
2) This range is accessible only with the RANGE key. Input impedance: approx. $10.6 \mathrm{M} \Omega / / 50 \mathrm{pF}$
3) The LCD indicates "+OL" above +1050V, "-OL" below -1050V or above 1050VRMS.
4) From 1 kHz , the measurement must exceed 15% of the range.

Secondary measurements and displays: FREQ (AC coupling) MAX, MIN, PEAK
$A C$ and $D C$ voltage AC+DC TRMS

60 mV range: Measuring a strong current or measuring a current for a long time may cause a temperature rise of some components.

Range	Operating range	Specified measuremen range ${ }^{4)}$	Resolution	Additional uncertainty DC \pm)	Uncertainty $\text { AC }(\pm)$	Additional uncertainty $\mathrm{F}(\mathrm{Hz})^{1)}$	Bandwidth	Input impedance $1 /<50 \mathrm{pF}$	Peak factor
$60 \mathrm{mV}{ }^{2)}$	$\begin{gathered} 0 \text { to } \\ 60,000 \mathrm{mV} \end{gathered}$	$\begin{gathered} 6,000 \mathrm{to} \\ 60,000 \mathrm{mV} \end{gathered}$	0,001mV	$\pm 15 \mathrm{D}$	$\begin{aligned} & 1,5 \% \mathrm{~L} \\ & \pm 35 \mathrm{D} \end{aligned}$	$\begin{gathered} 45<\mathrm{F}<65 \mathrm{~Hz} \\ 0,3 \% \mathrm{~L} \\ \text { typ. } \end{gathered}$	$\approx 400 \mathrm{~Hz}$	10,612M Ω	$\begin{gathered} 3 \text { to } \\ 50 \mathrm{mV} \end{gathered}$
600mV	$\begin{gathered} 0 \text { to } \\ 600,00 \mathrm{mV} \end{gathered}$	$\begin{gathered} 60,00 \text { to } \\ 600,00 \mathrm{mV} \end{gathered}$	0,01mV		$\begin{gathered} 0,8 \% \mathrm{~L} \\ +0,18 \% \mathrm{x} \\ {[\mathrm{~F}(\mathrm{kHz})-1] \mathrm{L}} \\ \pm 30 \mathrm{D} \end{gathered}$		10 Hz to 50 kHz	10,9M Ω	$\begin{gathered} 3 \text { to } \\ 500 \mathrm{mV} \end{gathered}$
6 V	$\begin{gathered} 0 \text { to } \\ 6,0000 \mathrm{~V} \end{gathered}$	$\begin{gathered} 0,6 \text { to } \\ 6,0000 \mathrm{~V} \end{gathered}$	0,0001V		$\left\lvert\, \begin{gathered} 0,5 \% \mathrm{~L}+ \\ 0,18 \% \mathrm{x} \\ {[\mathrm{~F}(\mathrm{kHz})-1] \mathrm{L}} \\ \pm 25 \mathrm{D} \end{gathered}\right.$	$\begin{gathered} \text { at } 100 \mathrm{~Hz} \\ 0,7 \% \mathrm{~L} \\ \text { typ. } \end{gathered}$	10 Hz to 100 kHz	10,9M Ω	3 to 5 V
60V	$\begin{gathered} 0 \text { to } \\ 60,000 \mathrm{~V} \end{gathered}$	$\begin{aligned} & 6,000 \text { to } \\ & 60,000 \mathrm{~V} \end{aligned}$	0,001V			$\begin{gathered} \text { at } 150 \mathrm{~Hz} \\ 1,8 \% \mathrm{~L} \\ \text { typ. } \end{gathered}$		10,082M	$\begin{aligned} & 3 \text { to } \\ & 50 \mathrm{~V} \end{aligned}$
600V	$\begin{gathered} 0 \text { to } \\ 600,00 \mathrm{~V} \end{gathered}$	$\begin{aligned} & 60,00 \text { to } \\ & 600,00 \mathrm{~V} \end{aligned}$	0,01V			at 300 Hz		10,008M	$\begin{gathered} 3 \text { to } \\ 500 \mathrm{~V} \end{gathered}$
$1000 \mathrm{~V}^{3)}$	$\begin{gathered} 0 \text { to } \\ 1000,0 \mathrm{~V} \end{gathered}$	$\begin{gathered} 60 \text { to } \\ 1000,0 \mathrm{~V} \end{gathered}$	0,1V					10,008M	$\begin{aligned} & 1,42 \text { to } \\ & 1000 \mathrm{~V} \end{aligned}$

1) See the typical curve of the 300 Hz filter on $p .37$.
2) This range is accessible only with the ${ }^{\text {RANGE }}$ key.

Input impedance: approx. $10.6 \mathrm{M} \Omega / / 50 \mathrm{pF}$
3) The LCD indicates "+OL" above +1050 V , "-OL" below -1050 V or above 1050VRMS.
4) From 1 kHz , the measurement must exceed 15% of the range

Secondary measurements and displays: FREQ (AC coupling) MAX, MIN, PEAK

Technical characteristics of the MX 5060 (continued)

CURRENTS

DC current

Particular reference conditions:

$\mu \mathrm{A}$ range: Measuring a strong current for a long time may cause a temperature rise of some components. In this case, it is necessary to wait some time for the metrological characteristics specified in $\mu \mathrm{A}$ to be restored.

Range	Operating range	Specified measurement range	Resolution	Uncertainty (\pm)	Voltage drop	Protection
$6000 \mu \mathrm{~A}$	0 to $6000.0 \mu \mathrm{~A}$	2.0 to $6000.0 \mu \mathrm{~A}$	$0.1 \mu \mathrm{~A}$	$0.8 \% \mathrm{~L} \pm 25 \mathrm{D}$	$25 \mathrm{mV} / \mathrm{mA}$	
60 mA	0 to 60.000 mA	0.020 to 60.000 mA	0.001 mA	$0.8 \% \mathrm{~L} \pm 20 \mathrm{D}$	$3 \mathrm{mV} / \mathrm{mA}$	
600 mA	0 to 600.00 mA	0.20 to 600.00 mA	0.01 mA	$0.8 \% \mathrm{~L} \pm 20 \mathrm{D}$	$0.58 \mathrm{mV} / \mathrm{mA}$	Fuse $11 \mathrm{~A} / 1000 \mathrm{~V}$ $>20 \mathrm{kA}$
6 A	0 to 6.0000 A	0.2000 to 6.0000 A	0.0001 A	$0.8 \% \mathrm{~L} \pm 20 \mathrm{D}$	$0.05 \mathrm{~V} / \mathrm{A}$	
$10 \mathrm{~A} / 20 \mathrm{~A} *$	0 to 20.000 A	0.200 to 20.000 A	0.001 A	$0.8 \% \mathrm{~L} \pm 20 \mathrm{D}$	$0.05 \mathrm{~V} / \mathrm{A}$	

The display indicates "OL" above 19.99A. The symbol blinks and a beep sounds above 10A.
${ }^{(*)}$ Acceptable overload: 10 A to 20 A for 30 s max. with a pause of 5 min between 2 measurements. Ambient temp. $35^{\circ} \mathrm{C}$ max.

AC current

AC RMS	Range	Operating range	Specified measurement range	Resolution	Uncertainty (\pm) 40 Hz to 20 kHz (**)	Peak factor	Voltage drop	Protection
	6000 $\mu \mathrm{A}$	$\begin{gathered} 0 \text { to } \\ 6000.0 \mu \mathrm{~A} \end{gathered}$	$\begin{gathered} 60 \text { to } \\ 6000.0 \mu \mathrm{~A} \end{gathered}$	$0.1 \mu \mathrm{~A}$	$\begin{gathered} 1.2 \% \mathrm{~L}+ \\ 0.08 \% \mathrm{x} \\ {[\mathrm{~F}(\mathrm{kHz})-1] \mathrm{L}} \\ \pm 25 \mathrm{D} \end{gathered}$	$\begin{aligned} & 2.6 \text { to } \\ & 5 \mathrm{~mA} \end{aligned}$	$25 \mathrm{mV} / \mathrm{mA}$	$\begin{gathered} \text { Fuse } \\ 11 \mathrm{~A} / 1000 \mathrm{~V} \\ >20 \mathrm{kA} \end{gathered}$
	60mA	$\begin{gathered} 0 \text { to } \\ 60.000 \mathrm{~mA} \end{gathered}$	$\begin{gathered} 6.000 \text { to } \\ 60.000 \mathrm{~mA} \end{gathered}$	0.001mA	$\begin{gathered} 1 \% \mathrm{~L}+ \\ 0.08 \% \mathrm{x} \\ {[\mathrm{~F}(\mathrm{kHz})-1] \mathrm{L}} \\ \pm 25 \mathrm{D} \end{gathered}$	$\begin{aligned} & 2.6 \text { to } \\ & 50 \mathrm{~mA} \end{aligned}$	$3 \mathrm{mV} / \mathrm{mA}$	
	600mA	$\begin{gathered} 0 \text { to } \\ 600.00 \mathrm{~mA} \end{gathered}$	$\begin{gathered} 60.00 \text { to } \\ 600.00 \mathrm{~mA} \end{gathered}$	0.01 mA		$\begin{gathered} 2.6 \text { to } \\ 500 \mathrm{~mA} \end{gathered}$	$0.58 \mathrm{mV} / \mathrm{mA}$	
	6A	$\begin{gathered} 0 \text { to } \\ 6.0000 \mathrm{~A} \end{gathered}$	$\begin{aligned} & 0.6000 \text { to } \\ & 6.000 \mathrm{~A} \end{aligned}$	0.0001A	$\begin{gathered} 1 \% L+ \\ 0.1 \% x \\ {[F(\mathrm{kHz})-1] \mathrm{L}} \\ \pm 25 \mathrm{D} \end{gathered}$	2.8 to 5A	0.05V/mA	
	$\begin{aligned} & \text { 10A } \\ & / 20 A^{*} \end{aligned}$	$\begin{gathered} 0 \text { to } \\ 20.000 \mathrm{~A} \end{gathered}$	$\begin{aligned} & 1.000 \text { to } \\ & 20.000 \mathrm{~A} \end{aligned}$	0.001A	$\begin{gathered} 1.2 \% \mathrm{~L}+ \\ 0.1 \% \mathrm{x} \\ {[\mathrm{~F}(\mathrm{kHz})-1] \mathrm{L}} \\ \pm 25 \mathrm{D} \end{gathered}$	3.7 to 8A	$0.05 \mathrm{~V} / \mathrm{mA}$	

The display indicates "OL" above 19.99A. The symbol blinks and a beep sounds above 10A.
Secondary measurements and displays: FREQ (AC coupling) MAX, MIN, PEAK
(*) Acceptable overload: 10A to 20A for 30s max. with a pause of 5 min between 2 measurements. Ambient temp. $35^{\circ} \mathrm{C}$ max.
$(* *)$ Additional uncertainty with the 300 Hz filter: see curve on p. 37 .

Technical characteristics of the MX 5060 (continued)

AC and DC current

$A C+D C$ TRMS Warning: the sum $A C+D C$ must never exceed the range, 600 mA , or 60 mA , or $6000 \mu \mathrm{~A}$, or 6 A , or 10 A , as the case may be.

The AC component must represent at least 5% of the amplitude of the $A C+D C$ total for it to be possible to measure it.

Range	Operating range	\qquad	Resolution	Uncertainty AC 40 Hz $20 \mathrm{kHz}(\pm)$ (**)	Additional uncertainty $\text { DC }(\pm)$	Peak factor	Voltage drop	Protection
$6000 \mu \mathrm{~A}$	$\begin{gathered} 0 \text { to } \\ 6000.0 \mu \mathrm{~A} \end{gathered}$	$\begin{gathered} 60 \text { to } \\ 6000.0 \mu \mathrm{~A} \end{gathered}$	$0.1 \mu \mathrm{~A}$	$\begin{gathered} 1 \% \mathrm{~L}+ \\ 0.08 \% \mathrm{x} \\ {[\mathrm{~F}(\mathrm{kHz})-1] \mathrm{L}} \\ \pm 25 \mathrm{D} \end{gathered}$	$\pm 15 \mathrm{D}$	2.6 to 5 mA	$25 \mathrm{mV} / \mathrm{mA}$	$\begin{gathered} \text { Fuse } \\ 11 \mathrm{~A} / 1000 \mathrm{~V} \\ >20 \mathrm{kA} \end{gathered}$
60mA	$\begin{gathered} 0 \text { to } \\ 60.00 \mathrm{~mA} \end{gathered}$	$\begin{gathered} 6.000 \text { to } \\ 60.000 \mathrm{~mA} \end{gathered}$	0.001 mA	$\begin{gathered} 1 \% \mathrm{~L}+ \\ 0.08 \% \mathrm{x} \\ {[\mathrm{~F}(\mathrm{kHz})-1] \mathrm{L}} \\ \pm 25 \mathrm{D} \end{gathered}$		$\begin{aligned} & 2.6 \text { to } \\ & 50 \mathrm{~mA} \end{aligned}$	$3 \mathrm{mV} / \mathrm{mA}$	
600mA	$\begin{gathered} 0 \text { to } \\ 600.00 \mathrm{~mA} \end{gathered}$	$\begin{gathered} 60.00 \text { to } \\ 600.00 \mathrm{~mA} \end{gathered}$	0.01 mA			$\begin{gathered} 2.6 \text { to } \\ 500 \mathrm{~mA} \end{gathered}$	$0.58 \mathrm{mV} / \mathrm{mA}$	
6A	$\begin{gathered} 0 \text { to } \\ 6.0000 \mathrm{~A} \end{gathered}$	$\begin{aligned} & 0.6000 \text { to } \\ & 6.0000 \mathrm{~A} \end{aligned}$	0.0001A	$\begin{gathered} 1 \% \mathrm{~L}+ \\ 0.1 \% \mathrm{x} \\ {[\mathrm{~F}(\mathrm{kHz})-1] \mathrm{L}} \\ \pm 25 \mathrm{D} \end{gathered}$		2.8 to 5A	0.05V/mA	
10A / 20A*	$\begin{gathered} 0 \text { to } \\ 20.00 \mathrm{~A} \end{gathered}$	0.600 to 20.000A	0.001A	$\begin{gathered} 1.2 \% \mathrm{~L}+ \\ 0.1 \% \mathrm{x} \\ {[\mathrm{~F}(\mathrm{kHz})-1] \mathrm{L}} \\ \quad \pm 25 \mathrm{D} \end{gathered}$		3.7 to 8A	$0.05 \mathrm{~V} / \mathrm{mA}$	

The display indicates "OL" above 19.99A. The symbol blinks and a beep sounds above 10A.
Secondary measurements and displays: FREQ (AC coupling) MAX, MIN, PEAK
(*) Acceptable overload: 10A to 20A for 30s max. with a pause of 5 min between 2 measurements. Ambient temp. $35^{\circ} \mathrm{C}$ max.
${ }^{(* *)}$ Additional uncertainty with the 300 Hz filter: see curve on p. 37 .

Technical characteristics of the MX 5060 (continued)

Frequency

Switch set to "Hz", measurement of the frequency of a voltage

Protection: 1414Vpk
Particular reference conditions: $150 \mathrm{mV}<\mathrm{U}<600 \mathrm{~V}$
When the switch is set to Hz , the 300 Hz filter is not in service.

Range	Operating range	Specified measurement range	Resolution	Intrinsic error
60 Hz	10.00 to 60.00 Hz	10.00 to 60.00 Hz	0.01 Hz	
600 Hz	10.0 to 600.0 Hz	10.00 to 600.0 Hz	0.1 Hz	$0.1 \% \mathrm{~L} \pm 1 \mathrm{D}$
6 kHz	0 to 6.000 kHz	0.010 to 6.000 kHz	0.001 kHz	
60 kHz	0 to 60.00 kHz	0.01 to 60.00 kHz	0.01 kHz	

Below 10 Hz , or if the signal detection level is inadequate, the reading is forced to 0 .

6. Measurement of the period in ms can be accessed using the $A C / D C$.

Freq. voltage or Freq. current simultaneously, (secondary display)

Particular reference conditions:

Max. frequency measurable in volts:
60 kHz
Max. frequency measurable in amperes: 60 kHz
When the switch is set to VLowZ, Volts or Ampere, if the 300 Hz filter is activated, the measurable frequency remains within the limits of the PB of the filter.

Below 10 Hz , or if the signal detection level is inadequate, the reading is forced: "-----".

Protection: 1414Vpk

Particular reference conditions:
The (+COM) input must not have been overloaded following the accidental application of a voltage to the input terminals with the switch set to Ω or T°.
If this happens, the return to normal may take about ten minutes.

Range	Specified measurement range	Resolution	Uncertainty	Measurement current	Open-circuit voltage
600Ω	0 to 600.00 *	0.01Ω	0.2\% L $\pm 20 \mathrm{D}$	$\approx 1 \mathrm{~mA}$	< 5V
$6 \mathrm{k} \Omega$	0 to 6.0000k Ω	$0.0001 \mathrm{k} \Omega$	0.2\% L $\pm 20 \mathrm{D}$	$\approx 126.6 \mu \mathrm{~A}$	
60k Ω	0 to 60.000k Ω	$0.001 \mathrm{k} \Omega$		$\approx 12.6 \mu \mathrm{~A}$	
600k	0 to 600.00k Ω	$0.01 \mathrm{k} \Omega$		$\approx 1.26 \mu \mathrm{~A}$	
$6 \mathrm{M} \Omega$	0 to 6.0000M	$0.0001 \mathrm{M} \Omega$	1.5\% L $\pm 30 \mathrm{D}$	$\approx 240 \mathrm{nA}$	
$60 \mathrm{M} \Omega$	0 to $60.000 \mathrm{M} \Omega$	$0.001 \mathrm{M} \Omega$	$3 \% \mathrm{~L} \pm 30 \mathrm{D}$	$\approx 29 \mathrm{nA}$	

${ }^{(*)}$ REL measurement

Technical characteristics of the MX 5060 (continued)

Audible
continuity

Protection: 1414Vpk
Response time $<100 \mathrm{~ms}$

Range	Resolution	Uncertainty	Open-circuit voltage	Measurement current
600Ω	0.01Ω	Audible signal triggered $<30 \Omega \pm 5 \Omega$	$<5 \mathrm{~V}$	$<1.1 \mathrm{~mA}$

Diode Test

Protection: 1414Vpk

Range	Resolution	Uncertainty	Open-circuit voltage	Measurement current
3 V	0.1 mV	Audible signal triggered $<40 \mathrm{mV} \pm 10 \mathrm{mV}$	$<5 \mathrm{~V}$	$<1.1 \mathrm{~mA}$

Capacitance

Temperature

Protection: 1414Vpk

Range	Operating range	Specified measurement range	Resolution	Intrinsic error	Measurement current	Measurement time
6 nF	0.100 to 6.000 nF	0.100 to 6.000 nF	0.001 nF	$2 \% \mathrm{~L} \pm 15 \mathrm{D}$	$\approx 1,26 \mu \mathrm{~A}$	$\approx 400 \mathrm{~ms}$
60 nF	0 to 60.00 nF	0 to 60.00 nF	0.01 nF	$1 \% \mathrm{~L} \pm 8 \mathrm{D}$	$\approx 1,26 \mu \mathrm{~A}$	$\approx 400 \mathrm{~ms}$
600 nF	0 to 600.0 nF	0 to 600.0 nF	0.1 nF	$1 \% \mathrm{~L} \pm 5 \mathrm{D}$	$\approx 1.26 \mu \mathrm{~A}$	$\approx 400 \mathrm{~ms}$
$6 \mu \mathrm{~F}$	0 to $6.000 \mu \mathrm{~F}$	0 to $6.000 \mu \mathrm{~F}$	$0.001 \mu \mathrm{~F}$	$1 \% \mathrm{~L} \pm 5 \mathrm{D}$	$\approx 12.6 \mu \mathrm{~A}$	$\approx 0.125 \mathrm{~s} / \mu \mathrm{F}$
$60 \mu \mathrm{~F}$	0 to $60.00 \mu \mathrm{~F}$	0 to $60.00 \mu \mathrm{~F}$	$0.01 \mu \mathrm{~F}$	$1 \% \mathrm{~L} \pm 5 \mathrm{D}$	$\approx 126.6 \mu \mathrm{~A}$	$\approx 0.125 \mathrm{~s} / \mu \mathrm{F}$
$600 \mu \mathrm{~F}$	0 to $600.0 \mu \mathrm{~F}$	0 to $600.0 \mu \mathrm{~F}$	$0.1 \mu \mathrm{~F}$	$3 \% \mathrm{~L} \pm 5 \mathrm{D}$	$\approx 1 \mathrm{~mA}$	$\approx 0.125 \mathrm{~s} / \mu \mathrm{F}$
6 mF	0 to 6.000 mF	0 to 6.000 mF	$1 \mu \mathrm{~F}$	$4 \% \mathrm{~L} \pm 5 \mathrm{D}$	$\approx 1 \mathrm{~mA}$	$\approx 17 \mathrm{~s} / \mathrm{mF}$
60 mF	0 to 60.00 mF	0 to 60.00 mF	$10 \mu \mathrm{~F}$	$6 \% \mathrm{~L} \pm 5 \mathrm{D}$	$\approx 1 \mathrm{~mA}$	$\approx 17 \mathrm{~s} / \mathrm{mF}$

The use of wires that are very short and shielded is strongly recommended.

Protection: 1414Vpk

Particular reference conditions:

An internal temperature rise may have been caused by:
> measurement of a strong current for a long time,
$>$ overload of the +COM input with the switch set to T° or Ω.
In this case, it is necessary to wait some time to recover the specified metrological characteristics.

The multimeter must be at the temperature of the room. If not, recovering the metrological characteristics may take up to 2 h . Otherwise, there may be a temperature offset, because the cold junction temperature reference is a little off.

If there is any doubt, it is possible to check by measuring a known temperature (example: ambient temperature) with the thermocouple.

Technical characteristics of the MX 5060 (continued)

Temperature (continued)	Range	Operating range	Specified measurement range	Resolution	Uncertainty (\pm)
	low	$-200.0^{\circ} \mathrm{C}$ to $200.0^{\circ} \mathrm{C}$	$-60.0^{\circ} \mathrm{C}$ to $200.0^{\circ} \mathrm{C}$	$0.1^{\circ} \mathrm{C}$	$0.5 \% \mathrm{~L} \pm 2^{\circ} \mathrm{C}$
		$-76.0^{\circ} \mathrm{F}$ to $392.0^{\circ} \mathrm{F}$	$0.1^{\circ} \mathrm{F}$	$0.5 \% \mathrm{~L} \pm 4^{\circ} \mathrm{F}$	
high	$-200^{\circ} \mathrm{C}$ to $1200^{\circ} \mathrm{C}$	$-60^{\circ} \mathrm{C}$ to $1200^{\circ} \mathrm{C}$	$1^{\circ} \mathrm{C}$	$0.5 \% \mathrm{~L} \pm 2^{\circ} \mathrm{C}$	
	$-328^{\circ} \mathrm{F}$ to $2192^{\circ} \mathrm{F}$	$-76^{\circ} \mathrm{F}$ to $2192^{\circ} \mathrm{F}$	$1^{\circ} \mathrm{F}$	$0.5 \% \mathrm{~L} \pm 4^{\circ} \mathrm{F}$	

The stated accuracy in temperature measurement does not take into account the accuracy of the K thermocouple.
There is no upper limit on the temperature display, other than the 6000 D of the display unit.

PEAK+ PEAK-
Add $1 \% \mathrm{~L}+30 \mathrm{D}$ to obtain the accuracy corresponding to the function and the range.
Fmax $=1 \mathrm{kHz}$ (1ms)

MAX / MIN
Add $0.2 \% \mathrm{~L}+2 \mathrm{D}$ to obtain the accuracy corresponding to the function and the range.

Acquisition time of the extrema: approximately 100 ms .

Operation of the audible beep

Beep reporting a valid key \rightarrow high-pitched sound	$4 \mathrm{kHz}, 100 \mathrm{~ms}$
Beep reporting an invalid key \rightarrow low-pitched sound	$1 \mathrm{kHz}, 100 \mathrm{~ms}$
bursts of 3 beeps separated by 5-second gaps (beep beep beep - gap - beep beep beep) reporting an overshoot of the danger threshold (600V) \rightarrow medium- pitched sound	$2 \mathrm{kHz}, 100 \mathrm{~ms}$
2 successive beeps (beep beep) reporting recording of the MAX, MIN, PEAK: \rightarrow medium-pitched sound	$2 \mathrm{kHz}, 100 \mathrm{~ms}$
Current >10A	$4 \mathrm{kHz}, 100 \mathrm{~ms}$

Technical characteristics of the MX 5060 (continued)

Variation in the nominal range of use	Quantity of influence	Range of influence	Quantity influenced	Influence	
				typical	MAX
	Temperature	$\begin{aligned} & 0^{\circ} \mathrm{C} \ldots 18 \\ & 28 \ldots 40^{\circ} \mathrm{C} \end{aligned}$	VdCmV	$0.01 \% \mathrm{~L} \pm 0.2 \mathrm{D} / 1^{\circ} \mathrm{C}$	$0.02 \% \mathrm{~L} \pm 0.25 \mathrm{D} / 1^{\circ} \mathrm{C}$
			VACmV, $\mathrm{V}_{\text {Lowz }} \mathrm{mV}$	$0.08 \% \mathrm{~L} \pm 0.2 \mathrm{D} / 1^{\circ} \mathrm{C}$	$0.15 \% \mathrm{~L} \pm 0.25 \mathrm{D} / 1^{\circ} \mathrm{C}$
			VDC	$0.01 \% \mathrm{~L} \pm 0.1 \mathrm{D} / 1^{\circ} \mathrm{C}$	$0.05 \% \mathrm{~L} \pm 0.1 \mathrm{D} / 1^{\circ} \mathrm{C}$
			VAC, VAC+DC, $\mathrm{V}_{\text {Lowz }}$		$0.15 \% \mathrm{~L} \pm 0.1 \mathrm{D} / 1^{\circ} \mathrm{C}$
			ADC	$0.05 \% \mathrm{~L} \pm 0.1 \mathrm{D} / 1^{\circ} \mathrm{C}$	$0.1 \% \mathrm{~L} \pm 0.1 \mathrm{D} / 1^{\circ} \mathrm{C}$
			AAC and AAC+DC	$0.08 \% \mathrm{~L} \pm 0.1 \mathrm{D} / 1^{\circ} \mathrm{C}$	$0.12 \% \mathrm{~L} \pm 0.1 \mathrm{D} / 1^{\circ} \mathrm{C}$
			$\rightarrow+$	$0.01 \% \mathrm{~L} \pm 0.1 \mathrm{D} / 1^{\circ} \mathrm{C}$	$0.1 \% \mathrm{~L} / 1^{\circ} \mathrm{C}$
			Ω	$0.05 \% \mathrm{~L} / 1^{\circ} \mathrm{C}$	$0.1 \% \mathrm{~L} / 1^{\circ} \mathrm{C}$
			$60 \mathrm{M} \Omega$		$0.3 \% \mathrm{~L} / 1^{\circ} \mathrm{C}$
			$n \mathrm{~F}, \mu \mathrm{~F}$		$0.2 \% \mathrm{~L} \pm 0.1 \mathrm{D} / 1^{\circ} \mathrm{C}$
			mF		$0.6 \% \mathrm{~L} \pm 0.1 \mathrm{D} / 1^{\circ} \mathrm{C}$
			Hz		$0.01 \% \mathrm{~L} / 1^{\circ} \mathrm{C}$
			Temperature		$\pm 2^{\circ} \mathrm{C}+0.05 \% \mathrm{~L} / 1^{\circ} \mathrm{C}$
			Stabilization time	$\approx 90 \mathrm{~min}$	2 h
	Humidity (without condensation)	10\% ... 80\% RH	$\begin{gathered} \mathrm{V} \\ \mathrm{~A} \\ +\stackrel{ }{+} \\ \Omega\left({ }^{*}\right) \\ \mathrm{Hz} \end{gathered}$	0	0
	Frequency	$1 \mathrm{kHz} \ldots 3 \mathrm{kHz}$	VAC		4\% L
		$3 \mathrm{kHz} \ldots 10 \mathrm{kHz}$			6\% L

Response of the

 filter

General characteristics

Mechanical characteristics

Housing

- Dimensions
$295 \times 270 \times 95 \mathrm{~mm}$
- Mass
- Materials
- Dust- and water-tightness
1.85 kg

ABS V0
IP 51, according to NF EN 60529

Supply

supplied with the instrument	- Operating instructions in 5 languages on CD ROM
	- Getting started guide
	- EU line power cord
	- Lead, 1.5 m , straight/straight, red
	- Lead, 1.5 m, straight/straight, black
	- Test probe, CAT IV, 1 kV , red
	- Test probe, CAT IV, 1 kV , black
MX 5060	- USB cord
	- K thermocouple, wire + adapter
	- SX-DMM BT software

spare - Fuse, 1000V, 11A, 10x38mm (consult our regional Manumesure technical centre)

